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ABSTRACT

Formulas suitable for calculating the electrostatic, temperature, and vapor density fields surrounding stationary
columnar ice crystals are derived. Columnar ice crystals are approximated as circular cylinders of finite lengths.
In this way the effects of sharp ‘edges are taken into account. Results of electrostatic fields for some columnar
ice crystals are shown. The potential distribution of a prolate spheroid is also determined and compared to that
of a circular cylinder. The results show that the approximation of a columnar crystal by a prolate spheroid is
inadequate. Formulas are also given to convert the electric fields into temperature and vapor density fields.

: 1. Introduction

In many calculations of cloud physics it is often nec-
essary to know the fields of temperature, vapor density,

~ and electric charge distributions surrounding ice crys-
tals. The first two fields are important to the calcula-
tions of diffusional growth. Although the classical elec-
trostatic analog method can predict the total diffusional

growth rates in which a detailed knowledge of field

distributions is unnecessary, it cannot predict the
growth habit of ice crystals which depends on these
detailed distributions (Pruppacher and Klett, 1978).
The knowledge of temperature and vapor density fields
is also necessary to the calculations of thermo- and
- diffusiophoretic forces which are important to the cap-
- ture of submicron aerosol particles by snow crystals
(Grover et al., 1977, Wang et al., 1978; Wang and
Pruppacher, 1980). The electrostatic fields are impor-

tant in calculations such as the charging of snow crystals.

~ by ions, scavenging of charged aerosol particles by

charged snow crystals, and the collisional growth of
snow crystals due to charge effects. i

Since snow crystals fall relative to the air, they gen-

erate hydrodynamic flow fields surrounding them- -

~ selves. These flow fields have no effect on the electro-
static fields due to the charges on the snow crystals.
Therefore, the calculation of the electrostatic fields can
be obtained by solving the Poisson equation in which
the flow fields play no part. The calculation of the tem-
perature and vapor density fields, however, do involve
the flow fields and, therefore, the appropriate equation
here is the convective diffusion equation (see Prup-
pacher and Klett, 1978). Unfortunately, the flow fields
passing snow crystals in atmospheric conditions are
~ not available at present. In this paper we, therefore,
limit our treatment to the case of stationary ice crystals.
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For stationary crystals, the convective diffusion equa-

" tion becomes the same as the Poisson equation in the

electrostatic case. Since many laboratory investigations
of the physical properties of ice crystals are carried out
under nonflow conditions, it is expected that the results
obtained here will be useful to these cases. ; ,
In this paper we investigate only the columnar crys-
tals. The true shape of these columns are hexagonal,
which is very difficult to treat. We shall approximate
these columns by circular cylinders of equal diameter
and length. This approximation should represent an
improvement to the prolate spheroid approximation
which lacks sharp edges at both ends. Even with such
a simplification the present problem is still not simple.
The main difficulty involved here is that such a cylinder
consists of two types of boundary surfaces, namely, the
cylindrical side surface and planar end surfaces. This:
poses a mixed boundary problem and the usual or-. -
thogonal function techniques become helplessly com-
plicated. In the present study we apply a technique
developed by Smythe (1956, 1962) who use the series

~ expansion and integral transformation method to de-

termine the charge density distribution and capacitance
of a charged right circular cylinder. Here we extend his
method to derive an analytical expression of the po-
tential distribution which can represent either electric
potential, temperature, or vapor density fields sur-
rounding such a cylinder. In Section 2 we shall for-
mulate and calculate the electrostatic fields. Conver-
sions of temperature and vapor density fields will be
given at the end. : -

2. Mathematical formulation

Figure 1 shows the configuration of the cylinder and

nomenclature of the problem. Our task is to determine
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FiG. 1. Nomenclature of the problem. The radius and half-length
of the cylinder are @ and c, respectlvely, p is the radial coordinate, z
the vertical coordinate, é,, &, and &, the unit vectors in radlal azi-
muthal, and vertical dlrectlons respectlvely

- the field strength at any outside point P(a,, ¢y, z;). We
shall assume that the cylinder is conducting and that
it is charged to surface potential V. This may be valid
for a single crystalline columnar ice. The charge den-

sities on the side and end surfaces can be expressed as

(Smythe 1956 Wang and. Chuang, 1982):

0_;= ZA(bZ__ZZ)n 1/3 (1)
n=0
and
o= ZB(I—pZ)" s,

()
respectlvely, where b, zy, and po are dlmensmnless
quantities defined by

b=cla, zp=z/c, and po = p/a,

where a is the radius and c¢ the half-length of the cyl-
inder, p and z are the radial and vertical coordinates,
respectively, and A, and B, are coefficients to be de-
termined. The above charge distributions are such that
the following equatlons are satlsﬁed on a closed surface
enclosing the origin: - - R

i
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d*V(z, 0) Vo when p=0
) - @
dz =9 O  when p#0,

where V is the potential.

As indicated by Smythe (1956), very near the edge
the charge distributions (1) and (2) become equal and
approach that on the charged rectangular wedge which
is proportional to 6'/3 where § is the distance from the
edge. The property of such a wedge is given in Smythe
(1968).

The next step is to determme the coeﬁiments A, and

‘B . This is done first by calculating the potential on

the axis of the cylinder due to the charge densities of
Eqs. (1) and (2). The expression of the potential is then -
differentiated with respect to zg and finally z, is equated
to zero (see Smythe (1968) for detail). The result is
2p )
u= > I MB, Fi + MNGAF> |, (5)
dzozp n=0 n-+ Z : : ) ;
3

where . v
1 .
= |
_ 2cz(2p).
el + bz)l’”*’l/2 T
2n+1/3, ___l ! ____1_ 1
, b ‘ (n 3).(17’ 2).’
N=- — >
(—1)”2”3(n +—é)uﬂ, |
G = 0.684463408,

®

and

F1=F1[p+%,n—p+§;n+1'+§;(1 +’b2)“:|,

F2=F2|:p+—;—',n~p+§;n+ 1 +é;b2(1 +b2);i:|

| M
are two hypergeometric functions. Equation (5) can be
substituted into Eq. (4). This yields a number of si-
multaneous equations which can be used for solving -

coefficients 4, and B,. But we still need an extra con-
dition to relate 4y and By. This additional condition

is «
Ao =b'"By, (®)

so that the charge distributions o, and o, match at the
edge of the cylinder. Thus by solving a number of si-
multaneous equations. of the type of Eq. (5) plus Eq.
(8), the coefficients 4, and B, can be determined. The
number of 4, and B, required to achieve good accuracy
(so that the correct surface potential is reproduced)
needs not be too large, being 6-8 terms usually,

~We now derive an expression for the electric poten-
tial outside the cylinder based on the charge density
dlstnbutlons (1) and (2). We first have to determine
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“the distance r from a point B(a, ¢, z) on the cylinder

to the field point P(ay, ¢1, z). This is (see Fig. 1)
r=z—z)* +a*+a? — 2aa; cos(¢:

- The contnbutlon of the charges on the cylindrical s1de
surface to the potential at P is therefore

o v

: V 3. b zf = d:
S(al 2 Zl) s der g
2__

z n— 1/3
2 An ( ) add;a’z

47re[(Zl — z)2 +a?+ a’® - 2aa, cos(¢r — gb)]”2 g

(10)

where ds = ad¢dz is a surface element on the side
surface. The angular part can be read1ly 1ntegrated to
give , =

, : 1 ) 2 ZZ n-1/3 .
Viay, é1,21) = e [24 > A ( ) ,

26

g o
e + 8" ’{aluﬁﬁ) @], an

where the complete elliptic integral K can be expressed
s - , ,

o 12, (1><3) s
K(’k)v—z[ll—(z)k»%— L
O [IX3%X5\ .,
+(2x4x6)k+'

l' 0[12 = (21 — 2)2 “+ az + alz}
8.2 =2aa, '

and

By a smnlar cons1derat10n the contnbu’uons of the
‘charges on upper and lower planar end surfaces to the
~ potential at P are, respectively,

: : i
Ve,u(al’a ¢l, Zl) = J-4 if A}

. 1 2 pz n—l/3‘ k

;—z;;l.fl”( S B
% S 2p K( 2B,°

(ay® + B N\ + 67

SN 1 ra 2 2 n_'l/3
Veias, ¢1;Z;):Z_‘Sl2f [E Bn(a 2p ) ]
: : TE 0 . 4
2P, 262 1/2 :
e (as® + BH)? K(C\%Z _:622) dp} (15)

and
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(13)

12y ’
) dp}, (14)
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where
R ‘(21"0)2+a +P,

622 = 2alb} (16) ’. .
=(z,+ P +a’+p )

. The electric potential at an external point P(a;, ¢1,
z;) due to the charged circular cylinder is therefore the
sum of the above three parts (11), (14), and (15), i.e.,

Ve= Vit Vot Vay (17)

The integrals (11), (14) and (15) are to be calculated
by numerical methods.

Once the potential profiles are known, the electnc
fields can be calculated by taking the gradients of the
potentials. In the present paper, these gradients are
taken numerically. One can, of course, determine the
fields graphically. It is most convenient to use spline
interpolation to find the neighboring ¥ values once
certain base point potentials are known. It is found
that the potentials determined this way are very close
to the values calculated using the full expressmns The

difference is only on the order of 1%.

3. Results and discussion

Eight cases of cylmders were calculated These cor-
respond to the eight columnar ice crystals in Schlamp
et al. (1975) and Wang and Pruppacher (1980). The
half-length-to-radius ratios (c/a) used in the calculations
are 1.21, 1.43, 1.54, 1.67, 2.22, 3.33, 5.00, and 8.33,
with approximate Reynolds numbers 0.2, 0.5, 0.7, 1.0,

.2.0, 5.0, 10.0, and 20.0, respectively. Some examples

are presented here. All results shown are in SI units.
Figures 2 and 3 show the computed charge density
distributions (in Coulomb per mieter square) on the: -
planar end surfaces and cylindrical side surfaces, re-
spectively. All the cylinders are assumed to be charged
to a surface potenual of 1 V. To obtain the cases when'
surface potential is Vo V, one ‘merely has to multiply
the results shown here by the factor Vy. In these and
the following figures R represents the radial distance
from the z-axis. Obviously the charge densities ap-
proach infinity near the edges; as would be expected.
This is due to our assumption that edges are infinitely -
sharp. Also it is clear that over most parts of both end
and side surfaces the charge densities are fairly uniform.
Only near the edges do the charge densities change

.rapidly. This behavior allows one to treat most of the

surfaces as uniformly charged surfaces. One would
therefore expect that the motion of a small particle
(small as compared to the dimension of the surface)
near the center part of the end surface will be similar
to that near a charged infinite plane, while the motion
near the equator of the cylindrical surface will be similar
to that near a charged infinitely long cylinder. :

Figures 4 and 5 show the distribution of potential
fields (in volts). Curves 1to 3 represent the potentlals
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Distributions of charge density o, (in C/m?) on the end surface. Curve 1, b=121;2,
43;3,b=1544,b=167,5, b=222;,6,b=3.33,7,b=5.00 and8 b =8.33.

at z = 0, 0.5¢, and 1.0c, respectively. Curve 2 is often increasing distance from the cylinder; the rates of fall
very close to curve 1 and therefore is not shown in (dV/dr, where r is measured in units of a) being larger
some cases. As expected, the potentials fall off with  for shorter cylinders. Also the potentials converge to

g90-3 % ALISN3IO JIHVHI IJVIENS

1 N
1 .2 .3 .4 eSS B .7 .8 . e 1.0

(DISTANCE FROM Z=0> * 1/2 LENGTH

- FiG. 3. Dlstnbutlons of charge densities o (m C/mz) on the side surface

Labels of curves are the same as Fig. 2.
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DISTANCE FROM R=0

FIG. 4. Profiles of the electric potentials for b=121. Cufve 1,z=0;2,
z=0.5¢c3,z=10c4,z=1.5¢ 5, z= 2.0c; 6, z = 3.0¢c.

~ one value when far away from the cylinder regardless
- of the z. This is, of course, due to the fact that when

 viewed at a distance sufficiently far from the cylinder,

_ any finite cylinder will look like a point charge, and
therefore the equipotential surfaces approach concen-

~tric spheres. The convergences are faster for the shorter

- cylinder because one need not go too far to view it as
a point charge. One can also think that they are closer
to the shape of spheres.
- Figures 6 and 7 show the magmtudes of the electric
fields (in volts per meter). There is also a convergence
feature similar to that of potentials, and can be ex-

- plained in the same manner. Curve-3 is the field at
-z =1.0¢, its value at R = 1.0a being infinite. This is

of course due to the sharp edges in our assumption.
Figures 8 and 9 show the zenith angles of the electric

AV IAN3LOG

v

fields at different positions. The zenith angle is the angle
between the electric field vector and the z-axis. If the
field vector is pointing vertically upward (i.e., along
the z-axis) then the zenith angle is zero. Since the elec-
tric field is azimuthally symmetric, this angle alone is
sufficient to determine the direction of the electric field.
These angles together with the magnitudes given in
Figs. 6 and 7 completely determine the electric field
vector. Figure 10 shows an example of the patterns of
the field lines. Such configurations make it clear that
the very strong fields near the sharp edges shall have.
important influence on- the dynamical behavior of
small charged particles getting close to them.

Since prolate spheroids have been considered as good
approximations of columnar ice crystals previously; it
is instructive to compare their field distributions with

1. Oa 2. Oa

3. Oa 4. Oo 5.

DISTANCE FROM R=0

FIG. 5. As in Fig. 4 except for b =5.00.




2376
27.0
24. 0

21.0

JOURNAL OF THE ATMOSPﬁERIC' SCIENCES.

Vor. 42, No.22

2. Do

£0+3 +« 01314 2IdL33N3

BISTANCE FROM R=0

. 0o S.

FIG: 6. Profiles of the magnitudes of the electric fields for b=121.
; Labels of curves are as in Fig. 4. :

the present cases. Figure 11 provides a comparison be- :

tween the potential distributions of a circular cylinder
and a prolate spheroid. The semimajor and semiminor
axes of the prolate spheroid correspond to the half
length and the radius of the cylinder, respectively. The
~ potential distribution external to a conducting prolate
spheroid charged to a surface potential of 1 V is (Morse
and Feshbach, 1953):

V= Inl( + D/E = DIfinl(és + /o — DI, (18)

where £ = (r, + r,)/f is the generalized radial coordinate
in a prolate spheroidal coordinate system; £ = constant
being a prolate spheroid with interfocal distance fin
and r, are the distances from an external point P to
the two foci; £ is the surface of the prolate spheroid
and is equal to 2c/a where ¢ and a are the semimajor

and 'semimindr, axes of the spheroid. It is seen from
Fig. 11 that there are clear discrepancies of the poten-

“tials of a prolate spheroid from that of a circular cyl-

inder both in the magnitudes and fall-off rates. For
example the potential of the spheroid at r = 3.0a from
the equator is ~0.35V while that of a circular cylinder
is ~0.47V, a difference of about 34%. This also means
that the temperature and vapor density (which are
analogous to the electric potential) at this point sur-
rounding a prolate spheroid will also be 34% lower
than that of a circular cylinder. In addition, because
of the steeper slopes of the potential curves for a prolate
spheroid, the electric fields (and hence the heat and
vapor fluxes) are overestimated. Since the electric fields
and the heat and vapor fluxes represent the strengths
of electric, thermophoretic, and diffusiophoretic forces,

20+3 « QO3AI4 2IH¥1DI33

‘DISTANCE FROM R=0
FIiG. 7. As in Fig. 6 except for b = 5.00.
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“FIG. 8. Zenith angles of the electric fields for b = 1.21. Labels of curves are as in-
Fig. 4. The zenith angle is the angle between electric field vector and z-axis.

1t is clear that using a prolate sphermd to approximate

- a columnar ice crystal would result in 51gn1ﬁcant over-
_ estimate of these forces. '

This, in turn, results in inaccurate estimates of the

~ collision efficiencies of small aerosol particles or drop-
' lets with these crystals. These inaccuracies of the prolate

spheroidal approximation are in addition to the fact
that prolate spheroids lack two sharp edges as the real

- columnar crystals. In summary, it is felt that the ap-

proximation of columnar ice crystals by prolate spher-
oids is inadequate.

4. Temperature and vapor density fields

The temperature and vapor density fields surround-
ing a stationary ice crystal satisfy the same Poisson and
Laplace equations as Eq. (4) with approprlate boundary '
condmons

Ts, i s étsurface g
T:{ oo Pl 8 (19)
Te,s Po = Poeo

at infinity..

The values of T, T, Pos and‘pu,;o,are all constants.

a= . 1067E-3
c= .5335SE~3
c/a= . S0O0DE+1
0. D . 1
s0. 0 5
70.0L ~
: 3
€0.0L - .

3T9ONY HLIN3Z

: i
2. 0o

3. Oo 4. 0w 5. Oa

DISTANCE FROM R=0

FIG. 9. As in Fig. 8 except for b = 5.00.
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V = 1 at the surface and ¥ = 0 at infinity. Therefore

7 : the preceding values of potentials and electric fields
cannot be used to represent the respective temperature

/
/
7. g
/- 7 , (vapor dcnsity) and heat flux (vapor flux) di:ectly, but
! / / must be modified by some factors. Such factors are
' derived in the following. Let a dimensionless quantity .

T be defined as ; :
. T—T i
T = (@0
T =Ty, : @0
Then T also satisfies Eq. (4) with the boundary con-
ditions for 7" being , :

L

{1 af surface. . (2i)
0 at infinity; .

which are the same as that for V. Therefore the values
given in Fig. 4 can be used to represent 7". The actual

temperature is, of course,

T=(T,— T)T + Ty, @
~ and the actual temperature gradient is - o
- VT = (T, T VT @3
Similarly, - L
o = (Pos = Pocc)P’s & Pocor - (24)
FI6. 10, Pattern of field lines for b = 1.43. ' Vp,, = (pos — pv’w)Vh;, (25)
k Although the equationvs afe the same as the electric where ' / Sl
B el 3 , @6)

potential case; the boundary conditions are different.

The boundary conditions for electric potential are that Poi— Prao

POTENTIAL

2. 00 3.00 4.00 S.00 6.00  7.00
. 'DISTANCE FROM R=0 :

0.00 - 1.00

© HG. 11. Comparison of potential distributions surrounding a charged circular cylinder ¢
and a charged prolate spheroid. Dashed curves are for circular cylinder of b= 1.21.
Solid curves are for prolate spheroid with a and ¢ as the semi-minor and semi-major

axes, respectively. Labels of curves are as in Fig. 4.
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5. Conclusmns

Herein we presented the methods of calculatlon and
results of the electric, temperature, and vapor density
fields surrounding columnar ice crystals: Actually any
quantity satisfying the same Poisson and Laplace
equations with Dirichlet boundary conditions (i.e., the

~ values of the dependent variable at the boundaries are

specified) can be treated in the same manner. The

computed results should be useful in some cloud phys--

ical calculatlons ,
It is to be noted that we treated here the cases for

_stationary ice crystals. The electrostatic fields will not

be influenced by the motions of crystals and the values

~ obtained above can be used directly. The temperature
“and vapor density fields, however, will change if ice
~ crystals are moving. This requires the knowledge of
~ flow fields. At present it is very difficult to calculate the
flow fields caused by the motion of ice crystals which -
~ are truly three-dimensional in nature. Nevertheless, the
~ present results can be apphed to cases when ﬂow isnot
_important.
There are also many other shapes of snow crystals :
whose electric, thermal, and diffusional quantities are

yet to be determined. Some of the shapes of planar

_hexagonal snow crystals have been mathematically

modeled by Wang and Denzer (1983). Since this shape
category can also be thought as “cylindrical” (except

" that their boundaries are not circular but are trans-
- formed by the expressions given by Wang and Denzer)
it is suspected that their fields can be calculated in a -

similar manner once the boundary transformatlon is
done. This is currently under our research.
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